Perception of a chronic volcanic hazard: persistent degassing at Masaya volcano, Nicaragua
نویسنده
چکیده
This study takes a combined qualitative and quantitative approach to examining the chronic hazard posed by persistent degassing at Masaya volcano, Nicaragua. The gas is a highly salient threat in communities surrounding Masaya volcano, with the elevated salience level of his invisible hazard deriving from the highly perceptible impacts of the degassing; these include individual and material impacts such as increased prevalence of self-reported respiratory disease and decreased crop diversification and productivity. Qualitative results concur with findings from a quantitative assessment of ambient SO2 exposure using diffusion tubes: the current level of SO2 degassing far exceeds international guideline values, making it a likely cause of adverse health effects for the general population. Conversely contaminant levels of heavy and toxic metals in foodstuffs were found to be below international standards. A community-based integrated hazard mitigation approach identified by this research is the cultivation of crops, particularly pineapple (Ananas comosus) and pitaya (Hylocereus sp.), that are better able to withstand the local environmental conditions (e.g. increased atmospheric SO2 and acid gas deposition). Despite this, little is known regarding disaster response and risk reduction at the community level and the gas hazard is largely overlooked. This shows large scope for increasing resilience in collaboration with the community, through for example the development of community-level risk management committees, improvement and implementation of (gas) mitigation strategies and disaster preparedness approaches. By reducing the impacts of the chronic hazard posed by persistent volcanic degassing, resilience to acute hazards is also likely to improve.
منابع مشابه
Heat and SO2 Emission Rates at Active Volcanoes – The Case Study of Masaya, Nicaragua
The necessity of understanding volcanic phenomena so as to assist hazard assessment and risk management, has led to development of a number of techniques for the tracking of volcanic events so as to support forecasting efforts. Since 1980s scientific community has progressively drifted research and surveillance at active volcanoes by integrated approach. Nowadays, volcano observatories over the...
متن کاملA reassessment of current volcanic emissions from the Central American arc with specific examples from Nicaragua
The Central American volcanic arc supplies a significant proportion of the persistent annual global sulphur dioxide emissions from volcanoes. In November/December 2003, we completed a survey of the arc section from Mombacho to San Cristóbal in Nicaragua recording individual mean fluxes of 800, 530 and 220 Mg day 1 in the plumes from San Cristóbal, Telica and Masaya, respectively. An assessment ...
متن کاملExperimental Simulation of Closed-System Degassing in the System Basalt^H2O^CO2^S^Cl
Magma degassing processes are commonly elucidated by studies of melt inclusions in erupted phenocrysts and measurements of gas discharge at volcanic vents, allied to experimentally constrained models of volatile solubility. Here we develop an alternative experimental approach aimed at directly simulating decompression-driven, closed-system degassing of basaltic magma in equilibrium with an H^C^...
متن کاملVolcanic source for fixed nitrogen in the early Earth’s atmosphere
Hot volcanic vents promote the thermal fixation of atmospheric N2 into biologically available forms. The importance of this process for the global nitrogen cycle is poorly understood. At Masaya volcano, Nicaragua, NO and NO2 are intimately associated with volcanic aerosol, such that NOx levels reach as much as an order of magnitude above local background. In-plume HNO3 concentrations are elevat...
متن کاملMagmas near the critical degassing pressure drive volcanic unrest towards a critical state
During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma-hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmati...
متن کامل